Object recognition in hyperspectral images using Binary Partition Tree representation

نویسندگان

  • Silvia Valero
  • Philippe Salembier
  • Jocelyn Chanussot
چکیده

In this work, an image representation based on Binary Partition Tree is proposed for object detection in hyperspectral images. This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure, which succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Hence, the BPT representation defines a search space for constructing a robust object identification scheme. Spatial and spectral information are integrated in order to analyze hyperspectral images with a region-based perspective. For each region represented in the BPT, spatial and spectral descriptors are computed and the likelihood that they correspond to an instantiation of the object of interest is evaluated. Experimental results demonstrate the good performances of this BPT-based approach. © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure Representation for Hyper spectral Images Using Binary Classification

Binary Partition Trees are hierarchical region-based representations of images. They define a reduced set of regions that covers the image support and that spans various levels of resolution. They are attractive for object detection as they tremendously reduce the search space. In this paper, several issues related to the use of BPT for object detection are studied. Concerning the tree construc...

متن کامل

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Representing and Retrieving Regions Using Binary Partition Trees

This paper discusses the interest of Binary Partition Trees for image and region representation in the context of indexing and similarity based retrieval. Binary Partition Trees concentrate in a compact and structured way the set of regions that compose an image. Since the tree is able to represent images in a multiresolution way, only simple descriptors need to be attached to the nodes. Moreov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2015